Analysis and Resynthesis of Quasi-harmonic Sounds: an Iterative Filterbank Approach
نویسندگان
چکیده
We employ a hybrid state-space sinusoidal model for general use in analysis-synthesis based audio transformations. This model, which has appeared previously in altered forms (e.g. [5], [8], perhaps others) combines the advantages of a source-filter model with the flexible, time-frequency based transformations of the sinusoidal model. For this paper, we specialize the parameter identification task to a class of “quasi-harmonic” sounds. The latter represent a variety of acoustic sources in which multiple, closely spaced modes cluster about principal harmonics loosely following a harmonic structure (some inharmonicity is allowed.) To estimate the sinusoidal parameters, an iterative filterbank splits the signal into subbands, one per principal harmonic. Each filter is optimally designed by a linear programming approach to be concave in the passband, monotonic in transition regions, and to specifically null out sinusoids in other subband regions. Within each subband, the constant frequencies and exponential decay rates of each mode are estimated by a Steiglitz-McBride approach, then time-varying amplitudes and phases are tracked by a Kalman filter. The instantaneous phase estimate is used to derive an average instantaneous frequency estimate; the latter averaged over all modes in the subband region updates the filter’s center frequency for the next iteration. In this way, the filterbank structure progressively adapts to the specific inharmonicity structure of the source recording. Analysissynthesis applications are demonstrated with standard (time/pitchscaling) transformation protocols, as well as some possibly novel effects facilitated by the “source-filter” aspect.
منابع مشابه
An Iterative Filterbank Approach for Extracting Sinusoidal Parameters from Quasi-harmonic Sounds
We propose an iterative filterbank method for tracking the parameters of exponentially damped sinusoidal components of quasiharmonic sounds. The quasi-harmonic criteria specialize our analysis to a wide variety of acoustic instrument recordings while allowing for inharmonicity. The filterbank splits the recorded signal into subbands, one per harmonic, in which time-varying parameters of multipl...
متن کاملA new approach for nonlinear vibration analysis of thin and moderately thick rectangular plates under inplane compressive load
In this study, a hybrid method is proposed to investigate the nonlinear vibrations of pre- and post-buckled rectangular plates for the first time. This is an answer to an existing need to develope a fast and precise numerical model which can handle the nonlinear vibrations of buckled plates under different boundary conditions and plate shapes. The method uses the differential quadrature element...
متن کاملSeparation of Harmonic Sounds Using Multipitch Analysis and Iterative Parameter Estimation
A signal processing method for the separation of concurrent harmonic sounds is described. The method is based on a two-stage approach. First, a multipitch estimator is applied to find initial sound parameters which are reliable, but inaccurate and static. In a second stage, more accurate and time-varying sinusoidal parameters are estimated in an iterative procedure, which imposes certain constr...
متن کاملSource-filter Model for Quasi-harmonic Instruments
In this paper we propose a new method for a generalized model representing the time-varying spectral characteristics of quasi harmonic instruments. This approach comprises a linear sourcefilter model, a parameter estimation method and a model evaluation based on the prototype’s variance. The source-filter-model is composed of an excitation source generating sinusoidal parameter trajectories and...
متن کاملMultiresolution Sinusoidal/stochastic Model for Voiced-sounds
The goal of this paper is to introduce a complete analysis/resynthesis method for the stationary part of voiced-sounds. The method is based on a new class of wavelets, the Harmonic-Band Wavelets (HBWT). Wavelets have been widely employed in signal processing [1, 2]. In the context of sound processing they provided very interesting results in their first harmonic version: the Pitch Synchronous W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003